LEVIATHAN
Turning Liveness Into Finality

ZYGOMEB
Optim Labs
zygomeb@gmail.com

January 3, 2024

1 ABSTRACT

We present the Leviathan scaling protocol, which under assump-
tion of liveness and deterministic transactions with exclusive state
access on the settlement chain (equivalent to Cardano's eutxo) al-
lows for the instant finality transaction layer with increased through-
put.

Leviathan, to achieve its full potential, however, requires an ac-
count abstraction primitive for users to leverage the full potential
of its latency improvements. This is where an Account Abstraction
is leveraged, coming together into a framework within which we
recoup composability of Cardano protocols.

What has been seen to be a task facing significant challenges
between batchers breaking atomic composability of DEX transac-
tions, and latency concerns for apps requiring fast confirmations
on liquidations are all resolved by way of our unified framework.
Within this paper only the scaling solution of Leviathan is outlined,
leaving the description of the account system for another docu-
ment.

While a solution like Hydra has, when the assumption of a sin-
gle honest participant is violated, its isomorphism with the base
layer broken, and is able to take control of all funds within it —

1



Leviathan maintainsthe equivalence with the base layer at all times,
as a fully embedded execution layer conforming to the rules of the
L1's spending rules, and under compromise of the sequencer net-
work at worst it shall halt, thereby granting no custody of these
funds to the network.

Even when constrained by the data throughput of the settle-
ment layer, the Leviathan protocol allows unconstrained state growth
and instant finality induced by, and only limited in settlement time
by the sequencer network.

2 INTRODUCTION

A Deterministic Transaction is defined to be one that, were the
input state to it change for the data it interacts with, it would be-
come invalid. In presence of a virtual machine that runs custom
validation rules beyond that of the ledger, that virtual machine
must also have its result uniquely defined by the input state.

This general definition is broad enough to be easily made use
of for more general application, but for the sake of mental mod-
eling it is important to reiterate that we're working on Cardano’s
eutxo model. Of particular importance is the fact that this deter-
ministic validation receives no additional input between when the
transaction is made and signed and when it is included in a block,
meaning that it acquires no dependency on, for example, the ex-
act block hash, timestamp, or otherwise. It isimportant to state, as
there is a class of protocols which change the execution context
of the transaction the moment it is included in a block vs when
executed beforehand.

Bringing us to the Guaranteed Transaction is one which is de-
terministic, and, has no input to it which can change or become
invalid. This is a transaction which is completely independent of
any time-based validity range, and, has a guaranteed exclusivity
to the spending rights to the inputs to it.

In this work, we operate on this class of transactions and build a
framework within which such transactions can be operated with,
allowing us to take advantage of the logical consequence of oper-
ating only on them:



Guaranteed Transactions under assumption of the liveness
of the ledger, have instant finality.

And furthermore:

Guaranteed Transactions can be used to construct a chain of
state changes without the bottleneck of the settlement ledger’s
throughput capacity.

Let's take a moment to unpack that second statement on our
practical example. Using the terminology of our Transaction Chain-
ing article, we take as inputs to the N+1-th transaction the outputs
of the N-th, without any required ledger confirmation of the N-th
transaction. The first transaction in this sequence we call "Trans-
action Chain’, is based on the inputs final in the ledger. Therefore
by induction, if each transaction in the sequence is a Guaranteed
one, and under assumption of liveness, we prove that the whole
seqguence is final.

Of note isthe fact that as long as this sequence is finite, no mat-
ter how long, the induction process allows us to assert this final-
ity, so long as the network does not invalidate these transactions
through an update or other dynamic processes. We may also call
this sequence the Leviathan Chain Extension.



3 IMPLEMENTATION

It is worth noting that, in order to fulfill the requirements for a
transaction to be Guaranteed, we must separate the user from
the action, i.e. necessarily decouple the user from the determinis-
tic nature of this transaction, as otherwise both the latency and
throughput benefits yielded from Leviathan are diminished. A
common sequencer network must be formed that, through what-
ever smart contract encoded consensus, must form the Transac-
tion Chain.

For participant tokens to be consumed in transactions made
in a guaranteed transaction chain we must construct an account
abstraction layer that allows transactions to be made on behalf of
the user, given witness to their desire (a sighed message, or an
intent).

In such a setup, while the network, depending on its imple-
mentation, may halt, unlike a traditional rollup it needs no fraud
proofs or multisignature guards to make sure that its continued
honesty is a given.

The main problem of using Leviathan as opposed to a tradi-
tional rollup, is that for the increased security of leveraging Ll trans-
actions directly, it makes no gain in their cost and yields no data
compression. Both of which mean that economically Leviathan
may be quite costly (on par with the L1 chain) relative to a rollup.

Furthermore, the extraordinarily high demand for a transaction
to be considered guaranteed makes implementation of any such
system extraordinarily hard. All of the transaction inputs would
ideally be subject to a separate chain transaction ordering con-
sensus, passing proof to the settlement Ll's Leviathan chain ex-
tension via cryptographically signed proof of the correct ordering.
As far as current implementation is possible, fully decentralized
guaranteed transactions are subject to further research and de-
velopment, given certain ledger constraints that make it more dif-
ficult.



3.1 Account Abstraction

Why do we even need it? In the process of trying to create a trans-
action type which would have the guaranteed property and mar-
rying it with user input we arrive at a point where we must both
take a message from a user and let a party (the sequencer) have
complete control over the L1 transaction creation. In other words,
we need an account holding the user’s funds that lets them signal
to the network what kinds of transactions they want to make. In
other words, signal their intent.

A key factor to consider when designing the correct abstrac-
tion for the account is that, calling it an account abstraction is a
slight misnomer. While this may be done and designed merely as
an account abstraction, the opportunity granted by having such a
framework open, and a requirement to be entirely subject to the
sequencer’s ordering, mean that all applications would have to
be entirely contained and free of context outside of the account
world. Areminder, for Guaranteed Transactions we need full static
context of the transaction. These applications may not do any-
thing unless the sequencer wills it. More on the topic of the se-
guencer in the next subsection.

Henceforth we assume the sequencer to be honest. Zooming
into the world of Cardano's eutxo specifically, the extension of the
abstraction into a framework, an execution layer unto itself, yields
a few core benefits. Notably, it establishes the system for deliv-
ery of arbitrary oracle or time inputs in real time, and depending
on its design, new types of tokens (for example, full erc20 spec-
trum). As far as application development goes on the Leviathan
Chain Extension, within this framework and for practical purposes,
we may disregard any and all concurrency or throughput blockers
that were previously ones on the L.

The only concern within the large concept of Leviathan is that
it yields no space benefits nor does it yield any cost benefit alone.
This can be amended by making the Account layer built using
Zero Knowledge techniques, and unto an image of a ZK Rollup.



3.2 Sequencer Network

The crux of the practical implementation of the abstract concept
of a guaranteed transaction is the Sequencer, a party (possibly a
sidechain) with executive authority to elect blocks in the chain ex-
tension.

Decentralization of a sequencer network is one of the biggest
challenges facing protocols of similar characteristics to Leviathan,
many opting to start off centralized and gradually transition to a
more decentralized implementation.

3.3 Time Travel

For the Leviathan Chain Extension, Lls Present is the Past, and its
Present is the Future. We must navigate that fundamental time
dilation tactfully. Of particular note is the entry into the Future
and exit into the Present. This entry is in and out of the contract’s
purview and may be regarded as semantically similar to bridging.

Tying into this problem is the travel into and out of the Future,
as it necessarily must either wait for the Past to reach the Present,
or wait until Finality in order to teleport into the Future. Similarly,
an application may exist both in the Past and the Future, and one
such application would be one that manages the stake of the LI
ledger while allowing the usual in-and-out of the Future system
behavior.



